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Motivation

Energy-aware design, sometimes called energy-efficient design, is the design
of a system to meet a given performance constraint with the minimum energy
consumption.

 Critical in battery-operated devices.
- Critical in terms of cost (computer centers).

- Critical since energy is converted into heat.



How

» Algorithm: scheduling, power-down strategies

Data management: memory-aware software optimization, routing protocol

Architecture: instruction set selection, dynamic voltage and frequency scaling

Virtualization: power saving of corporate data centers

Circuit: device sizing, exploiting of transistor stacking to reduce leakage power
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Dynamic Voltage and Frequency Scaling

Psw = 720G Vyd? f

* Psw average switch power consumption
 a probability of output switch

- CL load capacitance

- f clock frequency

* Va4 Operating voltage



Dynamic Voltage and Frequency Scaling
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C.M. Kyung, S. Yoo - Energy-Aware System Design



Power down mechanism

A system in idle state can be transitioned to low power modes

The goal is to develop transition schedules in order to minimise energy
consumption

Power down mechanism:

« Two states system: ON - OFF
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Power down mechanism: two states system
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Power down mechanism: two states system
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Problem: determine when to transition to the sleep
state in order to minimize energy consumption.
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Power down mechanism

A system in idle state can be transitioned to low power modes

The goal is to develop transition schedules in order to minimise energy
consumption

Power down mechanism:
« Two states system

* Multiple states system



Power down mechanism: multiple states system
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Clock Gating

| Clock gating EN _- Comb.
CLK I logic L ‘ logic

» Today all processors design use clock gating to some degree

- Non only low-power design but also many high-performance processors
utilise clock gating because of non extant impact on performance:

* IBM’s Power 5

* Intel’s X-Scale

C.M. Kyung, S. Yoo - Energy-Aware System Design



Power saving techniques on Wireless Sensor
Network




Where: Wireless Sensor
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Flat architecture Cluster architecture

Where: Wireless Sensor
Network Topology
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Power
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Wireless Power Management

Dynamic Power

Management in Wireless

Sensor Networks

Amit Sinha

Anantha Chandrakasan
Massachusetts Institute of Technology

Power-aware methodology uses an embedded
microoperating system to reduce node energy
consumption by exploiting both sleep state and

active power management.

Dynamic Power
Management

designed, additional energy savings can be
attained by using dynamic power management
(DMP) where the sensor node is shut down if no
events occur.” Such event-driven power con-
sumption is critical to maximum battery life. In
addition, the node should have a graceful ener-
gy-quality scalability so that the mission lifetime
can he extended if the annlication demands. at

power-aware methodology




Power down mechanism: multiple states system

power up

bi = 0 idle
ale ‘ idle
Bl

power down

Cees Witteveen, Energy-Efficient Algorithms



Power down mechanism: msp430

-+ Active Mode (AM) -

perhaps for some peripherals
- LPMO - CPU and MCLK are shutoff
and MCLK are off, DCO and DC generator

- LPM1 - CPL
are disabled

- LPM2 - CPU,

if the DCO Is not used for SMCLK

—verything Is turned on, except

MCLK, SMCLK and DCQO are ¢

while DC generator is still enabled
- LPMS3 - CPU, MCLK, SMCLK, DCO and DC generator

are disabled

- LPM4 - CPU and all clocks disabled

Isabled,




Power down mechanism: msp430
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Media Access Control (MAC) Layer

Transmission and reception are energy expensive
operations

Objective:
minimise worthless transmission
How:

minimise collisions
minimise cost of collisions



MAC Layer: MACA and MACAW

- A sends Ready-to-Send (RTS)
B responds with Clear-to-Send (CTS)
- A sends DATA PACKET
- (B acknowledge with ACK)
RTS and CTS announce the duration of the data transfer

Nodes overhearing RTS keep quiet for some time to allow A to receive
CTS

Nodes overhearing CTS keep quiet for some time to allow B to receive
data

- (A will retransmit RTS if no ACK is received)

P. Karn, “MACA - A new channel access method for packet radio”, in Proceedings of the ARRL CRRL Amateur Radio 9th
Computer Networking Conference, Redondo Beach, CA, Apr. 1990, pp. 134-140.

V. Bharghavan, A. Demers, S. Shenkar, and L. Zhang, “MACAW: A media access protocol for wireless LANS”, in
Proceedings of ACM SIGCOMM’94, London, UK, Sept. 1994, pp. 212-225.



MAC Layer: MACA and MACAW

A sends Ready-to-Send (RTS)
B responds with Clear-to-Send (CTS)

A S [Error Rate ATA-ACK |
] 0 36.76

(B ¢ 0.001 36.67
« 0.01 35.52

RT\ 0.1 9.93

NO( ) , eive
CT Table 4: The throughput, in packets per second, achieved by

a single TCP data stream between a pad and a base station
NO« in the presence of noise.

data
(A will retransmit RTS if no ACK is received)

enve

P. Karn, “MACA - A new channel access method for packet radio”, in Proceedings of the ARRL CRRL Amateur Radio 9th
Computer Networking Conference, Redondo Beach, CA, Apr. 1990, pp. 134-140.

V. Bharghavan, A. Demers, S. Shenkar, and L. Zhang, “MACAW: A media access protocol for wireless LANS”, in
Proceedings of ACM SIGCOMM’94, London, UK, Sept. 1994, pp. 212-225.



Sroadcast reception and processing
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Sroadcast reception
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Frame filtering
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Shunt resistor
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ez430-RF2500 energy consumption
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Power consumption assessment in wireless sensor networks. Antonio Moschitta and Igor Neri, ICT- Energy - Nanoscale
Energy Management Concepts Towards Zero-Power Information and Communication Technology



Switch capacitor
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Current mirror
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T. Laopoulos, P. Neofotistos, C. A. Kosmatopoulos, and S. Nikolaidis,” Measurement of Current Variations for the Estimation of Software-Related
Power Consumption,” IEEE Transactions on Instrumentation and Measurements, Vol. 52, no. 4, August 2003



SANDbed: Distributed Energy Measurements

Energy Monitoring
Station

TCP/IP

R '>5>'"Astbed Nodes
é © (SNMD +

"4 .- sensor Node)

Management
Nodes g

WSAN protocols to be analyzed

A. Hergenroder, J. Horneber, and J. Wilke. SANDbed: A WSAN Testbed for Network Management and Energy Monitoring.
Hamburg, Germany, Aug. 2009. 8. GI/ITG KuVS Fachgesprach “Drahtlose Sensornetze”.



“NERGY CONSUMPTION MODELLING

shell$ msp430-gcc --version

mspd430-gcc (MSPCGCC4_r4-20100210) 4.4.3

Copyright (C) 2010 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.



Modelling strategies: Finite state machine

Pro:

- Cons:
Rough es

—asy to iImplement

—asy to simulate

imate of energy consumpiti

»+ Complex

0 address lot of periphera




Modelling strategies: Network focused simulation
frameworks

Pro: =]
Fast simulation time —
Includes network and MAC layers

o=, \
"\ Croms Lapwr marugenest \‘.
"-.\ | ey me oy ' \
\ -: \
Secw agrment

Cons:
Coarse representation of node state

Inaccurate energy consumption estimate



Modelling strategies: Network focused simulation
frameworks - PAWIS

Programmer

v

Model

- ——————————————

|

: ! > '|  Sensors Misc Radio
_E CPU :Jl ower |

|

|

management

PAWIS framework

OMNeT++ SystemC

C++

- L

Executeable simulator <:> GUI

Johann, Glaser, et al. "Power aware simulation framework for wireless sensor networks and nodes." EURASIP Journal on
Embedded Systems 2008 (2008).



Modelling strategies: Instruction-level simulators

Pro:
Accurate energy consumption estimation

Tracking of node and peripheral states
Fine-grained timing

Cons:
Strictly dependant on the platform
Need of accurate calibration

Simulation time can be long



Avrora

-+ Cycle accurate execution times.
» Online monitoring of program behaviour.
- The profiling utilities allow users to study their program's lbehavior in simulation.

- Detailed observation of program behavior without disturbing the simulation, and
without modifying the simulator source code.

- The GDB debugger hooks allow source-level debugging and integrated
development and testing.

- Graphical representation program's instructions that is useful for understanding
how it Is structured and what the compiler does with your code.

- The energy analysis tool can analyze energy consumption.

- The stack checker tool can be used to bound the maximum stack size used by
your program.

http://compilers.cs.ucla.edu/avrora/



http://compilers.cs.ucla.edu/avrora/

Worldsens Framework

WSIm: node instruction-level and peripherals
simulator

WSNet: event based network simulator
eSimu: energy consumption analysis and estimate

http://wsim.gforge.inria.fr/



http://wsim.gforge.inria.fr/

Worldsens Framework:; WSIim

WSim is a full platform simulator that can run the target
platform object code without modification

debugging, profiling and performance
evaluation

______________________________________________________________________________________
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Worldsens Framework: WSNet

WSNet Is an event-driven simulator for wireless
networks

mob|||ty Node architecture
o~
energy source  mobitiy | @ﬂkla@
routing protocols Environment) Cﬂour»oj
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radio interface
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Worldsens Framework: eSimu

eSimu Is a complete system energy model based on
non-intrusive measurements

cycle accurate simulation tools to give energy

consumption feedback for embedded systems
software programming meesees
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Worldsens Framework: workflow

WSNet

Application

WSim

Execution
trace

Platform
calibration
file

Current
consumption
profile




Worldsens Framework: ez430-

RF2500
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ez430-
measurements and simulations: LE

RF2500 current consumptio
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Power consumption assessment in wireless sensor networks. Antonio Moschitta and Igor Neri, ICT- Energy - Nanoscale
Energy Management Concepts Towards Zero-Power Information and Communication Technology



ez430-
measurements and simulations:

RF2500 current consumption:
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Power consumption assessment in wireless sensor networks. Antonio Moschitta and Igor Neri, ICT- Energy - Nanoscale
Energy Management Concepts Towards Zero-Power Information and Communication Technology



ez430-RF2500 current consumption:
measurements and simulations; TX
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ez430-RF2500 current consumption:
measurements and simulations: TX with ACK
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Computer architecture: performances vs energy
efficiency



Pipeline

- Programmer assumes seguential execution of each instruction
Instruction execution: sequential use of proc. logic

nstruction fetch

nstruction decode and register fetch

—xecute

Vlemory access

Register write back
- When a given structure is used, the others are idle

If instruction must complete before executing the next one, the resources of the
processor are under-utilised

[IF [ ID[= MEM [we
I F[ID[EX|MEM[WB

IF|ID|EX|MEM | WB

t

e



Assembly line




Pipeline

- Divide execution in several stages (pipeline)

+Instructions progress through the pipeline

S0 overlapped execution of several Ins

IF D | EX
| IF 1D
IF

WB

ructions

MEM

WB

EX

MEM

WB




Superpipelining: more stages

Superpipelining: more stages. Higher frequency.

Several fetch stages, etc. Pentium 4: 20 stages (31 stages in
Prescott)

Drawlbacks: latch overhead, tight loops
Superscalar: process several instructions per cycle.
Drawbacks: more complex logic, hazards, bypasses

Pipeline Stages
- NN W W
ocouVvouvouwvowm

"Runtime Aware Architectures", Mateo Valero, HIPEAC CSW 2014, Barcelona.



Plpeline: performances vs energy

. Depeﬂds on the metric BIPS (Billion Instructions/ sec)
- BIPS/W
1r * & —a
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0.8 |-
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S 06 | ' N ¢
g L N
0.4 | m= .
. m=1 ¢ .
0.2 - * e b ‘
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Pipeline Stages

Hartstein, Allan, and Thomas R. Puzak. "Optimum power/performance pipeline depth." Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2003.



Memory Issue




Memory Issue

100,000

Performance
s 8

—
o
l

p—

1995 2000 2005 2010
Year
"Computer Architecture: A Quantitative Approach”, H. and P, 5th Ed, 2012.

Increasing gap In latency, many cycles to do an
ACCESS

1980 1985 1990

T-cyclecpu << T-accesSmem
We want large memories, which have higher latencies



Memory: locality

Memory instructions amongst the most used
But some @ are accessed more

-Or Instance, inst in a loop

his property Is called locality

emporal locality: reuse data

- After accessing @x, it is likely to access @x again
sSooN

- Spatial locality: use neighbor data
- After accessing @x, it is likely to access @x+1 soon
+ 90/10 rule of thumb: 90% of accesses to 10% of @




Memory: exploiting locality

- Put most accessed data in fast (but
small) SRAM (cache)

- Place the rest in large (but slow) DRAM Main memory

(main memory)

) l r? ‘
Deteqtlon of most accessed data” Cache
Locality |

CPU [regs

- Temp loc. -> on first access to @ copy
data to cache

- Spatial locality -> store also neighbour
data

- Memory Is divided in blocks of
consecutive words



Cache

- Two possibilities when accessing the cache

- Desired block is in cache -> Cache Hit; read data
+ Otherwise -> Cache miss: bring it from next level

- MissRate = Misses/Accesses: as low as possible
Different techniques depending on miss class

_arger cache to store more blocks

Pre-fetch: access blocks before actually needed (SW/
HW)

- Associativity: allow placing block in different lines




Cache miss
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Cache: can we do better?

Place another cache level (L2)

_arger and slower than L1

Sut still much faster than memory

—ventually repeat

Disk

Mefnory

> 1L
'O L3 cache
8 :
S [ L2 cache ]

10

[L1 cache] \/
Il

Latency



Cache: how much power?
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—thernet energy consumption
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Energy Efficient Ethernet An Overview - Mike Bennett Lawrence Berkeley National Lab



—thernet energy consumption

20 W1 Gbls
— 15 B 1 Gb/s (No data traffic)
« Typical switch with ; B 100 Mb/s
24 ports 10/100/1000 35 10 (110 Mb/s
Mhl/e 2  mm

In 2005, all the network interface controllers in the United
States (in computers, switches, and routers) used an
estimated 5.3 terawatt-hours of electricity.
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—thernet energy consumption

- An |EEE 802.3 Study Group
+ Formed in November 2006 to study the idea
+ Technical and economic feasibility
- Compatibility and distinct identity

- Broad market potential

+ The Institute of Electrical and Electronics Engineers (IEEE),
through the IEEE 802.3az task force developed the standard
ratified in September 2010

- Some companies introduced technology to reduce the
power required for Ethernet before the standard was
ratified, using the name Green Ethernet.
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What is a GPU

Graphical Processing Unit




GPU architecture

Data cache
(A big one)

Nicolas Pintos - [Harvard CS264] 03 - Introduction to GPU Computing, CUDA Basics
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GPU architecture
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GPU architecture
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GPU architecture
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Back to the ‘70s

Nicolas Pintos - [Harvard CS264] 03 - Introduction to GPU Computing, CUDA Basics



GPU programming

- Old School Style: write program in form of vector
graphic problem

- CUDA (Compute Unified Device Architecture):
framework developed by NVIDIA

+ OpenCL (Open Computing Language): is a framework
for writing programs that execute across
neterogeneous platforms (CPUs, GPUs, DSPs)
maintained by the Khronos Group
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Doing More with Less of a Scarce Resource

GPUs are driving energy efficiency across the computing
industry, from phones to super computers.

Today, CIOs running enterprise data centers are looking to drive down energy costs and increase
performance — goals seemingly at odds. For researchers, scientists and engineers, the power
consumption of high-performance computing (HPC) systems can impose crippling limits on their
work. On a smaller scale, limited battery life can pull the plug on the access, pleasure, and
productivity gains enjoyed by the billions of people participating in the mobile computing
revolution. In short, the energy efficiency of computing products affects nearly everyone and the
environment in which we live.

GPUs — which have grown from their computer-gaming roots to enhance everything from medical
imaging to oil exploration — recently have been redesigned to be the most energy efficient
processors in the market. On a per-instruction basis, GPUs are dramatically more power efficient
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GPU power consumption

2000
[. — 1500
profiling computer
< 1000
500
power meler
power power 0
Sera

Wall e (P e

ata

Execution time (second)

e
GPU

Multi

Outlet

Figure 4. Execution Time of GEM

compuling server

20 ﬂ 200000
X0
150000
150
100000
1 erEEEeeeerreEssrrerssettrra s et e ren
o 50000
0 250 500 750 1000 1250 1500 1750 2000 2250
Tire (second)
0 [mamnna]
=500 cenner N

Power (wantt)

Energy Consumption (joule)

m——ni— T ¢ om—_N Serial Multi GPU
Figure 3. The Execution Time and Power .
Consumption of the CPU and GPU Figure 5. Energy of GEM

Huang, Song, Shucai Xiao, and Wu-chun Feng. "On the energy efficiency of graphics processing units for scientific
computing.” Parallel & Distributed Processing, 2009. IPDPS 2009. |[EEE International Symposium on. IEEE, 2009.



Simulation framework for scheduling performance

evaluation on C

PU-GPU heterogeneous system

Hsm — (87D7~77875)

ENQUEUE >

Single non-preemptive priority queue

Rule 1 Each Realtime Job has higher priority than User job.
Rule 2 FEach Realtime Job runs on a CPU device.

Rule 3 Each GPU User Job runs on a GPU device if it is free, otherwise on a
CPU device.

Rule 4 Each CPU User Job runs on a CPU device.

Rule 5 FEach Job executed on a CPU device can spend mazimum gt cputime
before being released.

Vella, Flavio, et al. "A simulation framework for scheduling performance evaluation on CPU-GPU heterogeneous system." Computational
Science and lts Applications—ICCSA 2012. Springer Berlin Heidelberg, 2012. 457-4609.
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Vella, Flavio, et al. "A simulation framework for scheduling performance evaluation on CPU-GPU heterogeneous system." Computational
Science and lts Applications—ICCSA 2012. Springer Berlin Heidelberg, 2012. 457-4609.




Thank you for your attention!

igor.neri@nipslab.org



